A generalization of Tutte's theorem on Hamiltonian cycles in planar graphs

نویسندگان

  • Jochen Harant
  • Stefan Mengel
چکیده

In 1956, W.T. Tutte proved that a 4-connected planar graph is hamiltonian. Moreover, in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains a hamiltonian cycle through any two of its edges. We prove that a planar graph G has a cycle containing a given subset X of its vertex set and any two prescribed edges of the subgraph of G induced by X if |X| ≥ 3 and if X is 4-connected in G. If X = V (G) then Sanders’ result follows. We also discuss the problem under which condition a 4-connected planar graph has a hamiltonian cycle through more than two specified edges. (Joint work with F. Göring and S. Senitsch.)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-walks in 3-connected Planar Graphs

In this we prove that every 3-connected planar graph has closed walk each vertex, none more than twice, such that any vertex visited twice is in a vertex cut of size 3. This both Tutte's Theorem that 4-connected planar graphs are Hamiltonian and the result of Gao and Richter that 3-connected planar graphs have a closed walk visiting each vertex at least once but at most twice.

متن کامل

Grinberg's Criterion Applied to Some Non-Planar Graphs

Robertson ([5]) and independently, Bondy ([1]) proved that the generalized Petersen graph P (n, 2) is non-hamiltonian if n ≡ 5 (mod 6), while Thomason [7] proved that it has precisely 3 hamiltonian cycles if n ≡ 3 (mod 6). The hamiltonian cycles in the remaining generalized Petersen graphs were enumerated by Schwenk [6]. In this note we give a short unified proof of these results using Grinberg...

متن کامل

A new constraint of the Hamilton cycle algorithm

Grinberg’s theorem is a necessary condition for the planar Hamilton graphs. In this paper, we use cycle bases and removable cycles to survey cycle structures of the Hamiltonian graphs and derive an equation of the interior faces in Grinberg’s Theorem. The result shows that Grinberg’s Theorem is suitable for the connected and simple graphs. Furthermore, by adding a new constraint of solutions to...

متن کامل

A non-planar version of Tutte's wheels theorem

Thtte's Wheels Theorem states that a minimally 3-connected non-wheel graph G with at least four vertices contains at least one edge e such that the contraction of e from G produces a graph which is both 3-connected and simple. The edge e is said to be non-essential. We show that a minimally 3-connected graph which is non-planar contains at least six non-essential edges. The wheel graphs are the...

متن کامل

Five-Connected Toroidal Graphs Are Hamiltonian

It is well known that not all 3-connected planar graphs are hamiltonian. Whitney [10] proved that every triangulation of the sphere with no separating triangles is hamiltonian. Tutte [9] proved that every 4-connected planar graph has a Hamilton cycle. Extending Tutte's technique, Thomassen [8] proved that every 4-connected planar graph is in fact Hamilton connected. (A small omission in [8] was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009